

BACtwin2025 | Mainz

Neubauten und Bestandsgebäude besser betreiben wie der BACtwin-Benutzeradressierungsschlüssel Ordnung ins Datenchaos bringt **X**

Al-Washing

App-Entwicklung so einfach wie Pizza bestellen.

Builder.ai

KI macht 3D aus 2D.

Kaedim

X

Was wir alle wollen

- Echte Digitalisierung (statt nur Datensammlung)
- Effizienter Betrieb
- Nachhaltigkeit
- Zukunftsfähige Gebäude

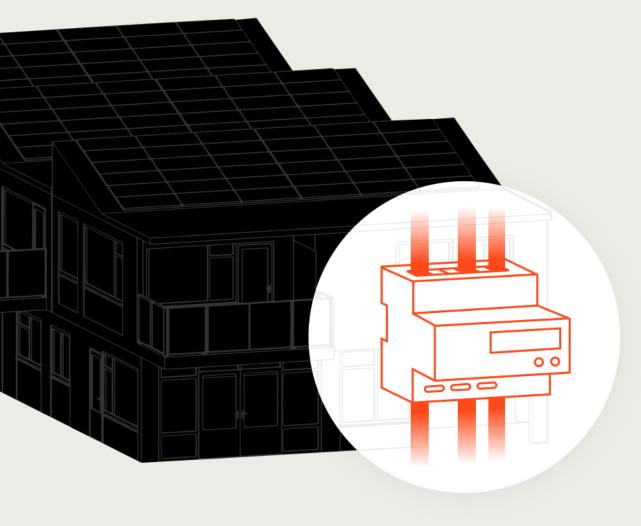
Warum das in der Realität so schwierig ist

Hauptgebäude

- 12.500 Datenpunkte
- 3 Benutzeradressierungsschlüssel

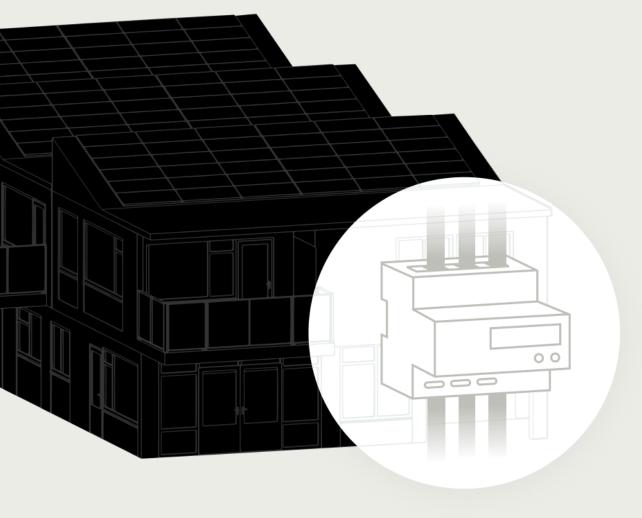
Technikzentrum Süd

- 7.400 Datenpunkte
- 5 Benutzeradressierungsschlüssel


Verwaltungsgebäude

- 5.600 Datenpunkte
- 2 Benutzeradressierungsschlüssel

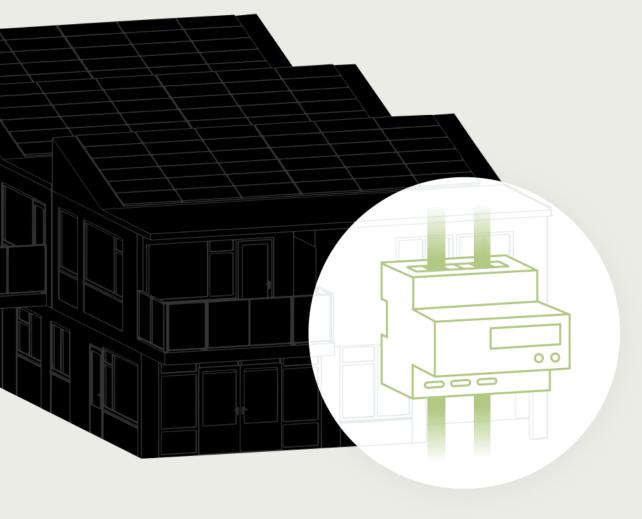
BACtwin 2025


Blackbox Gebäude

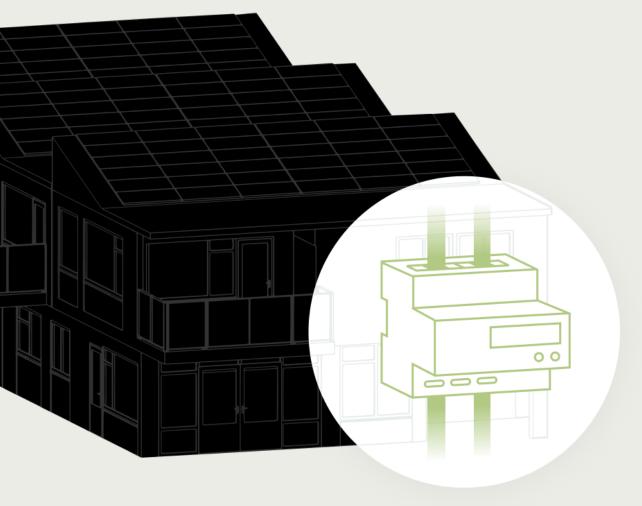
→ 21254HZG402VL01MT01: 60 °C

6

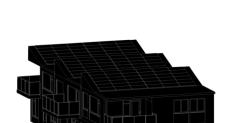
BACtwin 2025



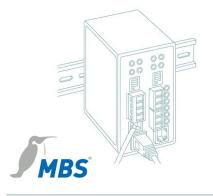
Blackbox Gebäude


→ B'H'HDst'HGrp14'MxCrt'TFl: 60 °C

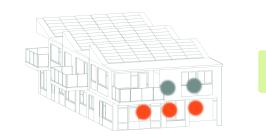
Blackbox Gebäude


→ DE60528AVU1ISP_V02-HZ001ME01: 60°C

Blackbox Gebäude


DE60528AVU1ISP_V02-HZ001ME01: 60°C B03'G346'LTA'UG01'120A01001'FanEx'Cmd B03'G346'LTA'UG01'120A01001'PreHcl'Vlv B03'G346'LTA'UG01'120A01001'DmpMx'... /02/000/02/08/H901.01/19: 1

Von der Black Box zum transparenten Gebäude



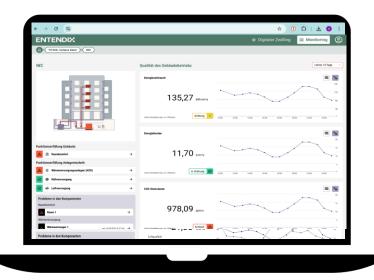
Transparenz durch Daten

Integration & Standardisierung

Automatisierung & Intelligenz

Black Box Gebäude

Technische Anlagen sind undurchsichtig und schwer zugänglich.

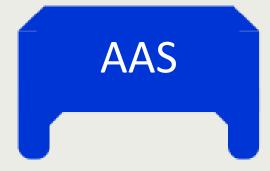

Das Gerät sammelt automatisch alle relevanten Anlagedaten.

Digitaler Zwilling

KI strukturiert die Daten und erstellt ein virtuelles Abbild des Gebäudes Monitoring & Optimierung

Transparente Analysen decken Ineffizienzen auf und leiten Optimierungen ein.

Auf zur Demo – Teil 1



Das einheitliche Vokabular

BACtwin

- Standardisiertes Vokabular der Gebäudeautomation (AMEV)
- Eindeutige Semantik
- Konsistenz über Systeme hinweg

Der digitale Zwilling

- Verwaltungsschale (Asset Administration Shell)
- Industrie 4.0 Standard für Interoperabilität
- Virtuelles Abbild von Assets (Fühler, Anlage, Gebäude etc.)
- Standardisierte Teilmodelle für verschiedene Aspekte

Der BACtwin Standard

Gewerk	Anlage	Baugruppe	Medium	Aggregat	Betriebs- mittel	Funktion	
GWA	Aufberei- tungsanlage	Warmwass- erstattion	Warm-wasser	Begleit- heizung	Temperatur	Messwert	
HZG	Erzeugungs-	Wärme-	Abwasser	Ventil	Druck	Sollwert	
RLT	anlage	pumpe	Heizwasser-		Feuchte	Stör-meldung	
KAE	Verteil-anlage	Heizkreis	Vorlauf	Pumpe	relativ	Wartungs-	
GAA	Lüftungs-	Ventilator-	Zuluft	Fühler	Motor	meldung	
	anlage	baugruppe	Abluft	Klappe	Reperatur- schalter	Stellsignal	
		Filter-gruppe					

13

Heterogene Datenpunkte in einem Gebäude

Description	Object Name				
MW Zulufttemperatur 1	/55/000/01/01/S325.01/1				
MW Aussenluftfeuchte	/55/000/01/01/S325.04/4				
BS LE-Pumpe	/55/000/01/10/H901.01/27				
MW LE-Ventil Rückführung	/55/000/01/11/H614.01/4				
RL Temp. MW	HA_TC004_U1_HK02_TRL001_MW_001				
VL Temp. 1 MW	HA_TC004_U1_HK02_TRV001_MW_001				
Betriebsst. Pumpe	HA_TC004_U1_HK02_PPE003_BS_001				

BACtwin

Automatisierte Konvertierung mit Kl

Heterogene Datenpunkte in einem Gebäude

Einheitliches BACtwin Vokabular

Description	Object Name	Anlage	Gewerk	Anlagen- art	Bau- gruppe	Medium	Aggregat	Daten- punkt
MW Zulufttemperatur 1	/55/000/01/01/S325.01/1	Lüftung 1	RLT	Lüftungs-	Luftkanal	Zuluft	Fühler	MW Tem-
				anlage				peratur
MW Aussenluftfeuchte	/55/000/01/01/S325.04/4	Lüftung 1	RLT	Lüftungs-	Luftkanal	Außenluft	Fühler	MW
				anlage				Feuchte
BS LE-Pumpe	/55/000/01/10/H901.01/27	Lüftung 1	RLT	Lüftungs-	Erhitzer	Heiz-	Pumpe	Betriebs-
				anlage		wasser		stunden
MW LE-Ventil Rückführung	/55/000/01/11/H614.01/4	Lüftung 1	RLT	Lüftungs-	Erhitzer	Heiz-	Ventil	Rückführ-
				anlage		wasser		wert Stell.
RL Temp. MW	HA_TC004_U1_HK02_TRL001_MW_001	Wärme 1	HZG	Verteil-	Heizkreis	Heizwass-	Fühler	MW Tem-
				anlage		Rücklauf		peratur
VL Temp. 1 MW	HA_TC004_U1_HK02_TRV001_MW_001	Wärme 1	HZG	Verteil-	Heizkreis	Heizwass-	Fühler	MW Tem-
				anlage		er Vorlauf		peratur
Betriebsst. Pumpe	HA_TC004_U1_HK02_PPE003_BS_001	Wärme 1	HZG	Verteil-	Heizkreis	Heiz-	Pumpe	Betriebs-
				anlage		wasser		stunden

Automatisierte Konvertierung mit Kl

Heterogene Datenpunkte in einem Gebäude

Description Object Name MW Zulufttemperatur 1 /55/000/01/01/S325.01/1 MW Aussenluftfeuchte /55/000/01/01/S325.04/4 /55/000/01/10/H901.01/27 BS LE-Pumpe MW LE-Ventil Rückführung /55/000/01/11/H614.01/4 RL Temp. MW HA TC004 U1 HK02 TRL001 MW 001 VL Temp. 1 MW HA_TC004_U1_HK02_TRV001_MW_001 Betriebsst. Pumpe HA TC004 U1 HK02 PPE003 BS 001

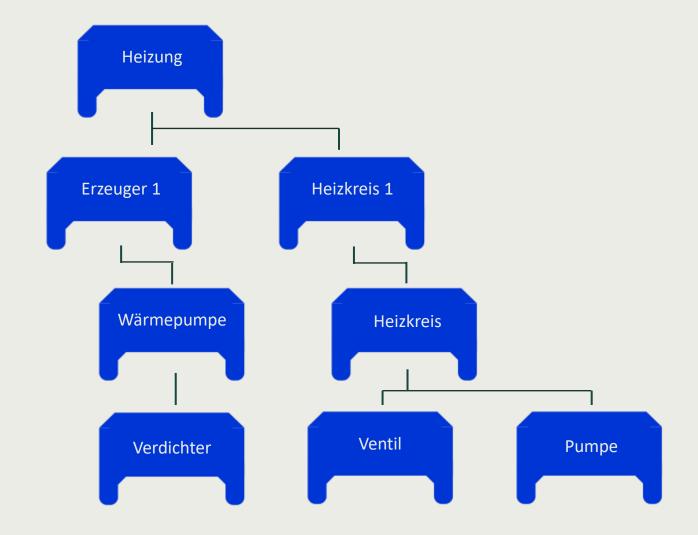
Einheitlicher BACtwin BAS

BACtwin BAS
430_LTA01*00_LKL01_ZU~_EF~01_T~~01_MW~01
430_LTA01*00_LKL01_AU~_EF~01_M~~01_MW~01
430_LTA01*00_ERH01_HZ~_PPE01_K~~01_BZ~01
430_LTA01*00_ERH01_HZ~_VEN01_MOT01_RW~01
420_VTA01*00_HZK01_HZR_EF~01_T~~01_MW~01
420_VTA01*00_HZK01_HZV_EF~01_T~~01_MW~01
420_VTA01*00_HZK01_HZ~_PPE01_K~~01_BZ~01

. .

Kostenloser BACtwin-Konverter

https://lp.iconag.com/bactwin-konverter/


Der digitale Zwilling – Der BACtwin als Basis der Strukturierung

Gewerk

Anlagen

Baugruppen

Aggregate

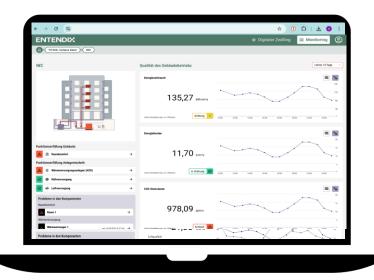
×

Teilmodelle als zentrale Datenbasis

Betriebsdaten

Technische Dokumentation

Planungsunterlagen


Teilmodelle

- Betriebsinformationen
- Key Performance Indikatoren
- Technisches Monitoring AMEV Nr. 178
- Optimierungsvorschläge
- Herstellerinformationen
- Wartungsinformationen
- Schemata
- IFC-Pläne
- •

Auf zur Demo – Teil 2

Automatisiert eingerichtetes Monitoring

Hauptgebäude - 12.500 Datenpunkte - 3 Benutzeradressierungsschlüssel Technikzentrum Süd - 7.400 Datenpunkte - 5 Benutzeradressierungsschlüssel Verwaltungsgebäude - 5.600 Datenpunkte 12 Stunden 12 Stunden

- 2 Benutzeradressierungsschlüssel

Zeitdauer für

- KI-Analyse
- Aufbau digitaler Zwillinge
- Technisches Monitoring

22

Daten verstehen, Gebäude optimieren – Der BACtwin als Grundlage für smarte Betriebsführung

Transparenz durch Daten

- Heterogene Daten automatisch aufbereiten mit KI
- Klare Sicht auf Anlagen, Messwerte und Betriebszustände

Integration & Standardisierung

- Nutzung von Standards wie Verwaltungsschale & BACtwin
- Einheitliche Basis, die über Unternehmensgrenzen hinweg integriert werden kann.

Automatisierung & Intelligenz

- Standardisierung ermöglicht automatisierte Prozesse & Abläufe
- Intelligente Algorithmen/ Auswertungen liefern dann Erkenntnisse aus den Daten

BACtwin 2025

Kontakt

Dr.-Ing. Maximilian Both

E-Mail-Adresse

max.both@entendix.com

Adresse

Quantiusstr. 3, 53115 Bonn

Website

www.entendix.com

Danke

ENTENDIX